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Abstract
Background: Sin Nombre virus (SNV) establishes a persistent infection in the deer mouse,
Peromyscus maniculatus. A strong antibody response occurs in response to SNV infection, but the
role of the innate immune response is unclear. To address this issue, we have initiated an effort to
identify and characterize deer mouse cytokine and chemokine genes. Such cytokines and
chemokines are involved in various aspects of immunity, including the transition from innate to
adaptive responses, type I and type II responses, recruitment of leukocytes to sites of infection, and
production of mature cells from bone marrow progenitors.

Results: We established a colony of SNV antibody-negative deer mice and cloned 11 cytokine and
chemokine partial cDNA sequences using directed PCR. Most of the deer mouse sequences were
highly conserved with orthologous sequences from other rodent species and functional domains
were identified in each putative polypeptide.

Conclusions: The availability of these sequences will allow the examination of the role of these
cytokines in deer mouse responses to infection with Sin Nombre virus.

Background
Deer mice (Peromyscus maniculatus) are the principal natu-
ral host of Sin Nombre virus (SNV), the etiologic agent of
most hantavirus pulmonary syndrome (HPS) cases in
humans in North America [1-3]. Deer mice are found
throughout most of North America, except for the eastern
seaboard and southeast United States [4].

SNV predominantly infects capillary endothelial cells
without discernible pathology [5]. A prominent feature of
HPS is capillary leakage and subsequent hypotension that
causes death by cardiac failure. In addition to resident
alveolar macrophages, lymphocytes infiltrate the lungs of
patients and contribute to the pathology by secreting
proinflammatory cytokines, including interferon-γ
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(IFNγ), interleukin-2 (IL-2), tumor necrosis factor (TNF),
and lymphotoxin (LT) [6]. These characteristics suggest
HPS may be a cytokine-mediated immunopathology.

As is usual with most long-term reservoir hosts, deer mice
exhibit little pathology during acute infection with SNV
[7]. The virus infects capillary endothelial cells of deer
mouse lungs, but lymphocyte infiltration or inflamma-
tion are not observed. After acute infection, the virus
establishes persistence in many tissues [8] and most, if not
all, deer mice remain infected for the remainders of their
lives.

The role of the immune response in infected deer mice is
unclear because few reagents of defined specificity have
been developed to characterize their immune function. A
strong IgG antibody response occurs [7,9], suggesting that
B cells and helper T cells participate in containment of the
virus, but the role of cytokines has not been characterized.
As part of our continuing efforts to develop the deer
mouse as a model for SNV research [10,11]; (Green et al.,
in press; Richens et al., submitted), we established a col-
ony of deer mice captured in a region where SNV is prev-
alent [12,13]. Splenocytes obtained from deer mice from
this colony were used to clone several cytokine and chem-
okine cDNA sequences. These sequences represent several
components of the immune response, including the tran-
sition from innate to adaptive responses (IL-12a, IL-21,
IL-23a), type I (IL-2) and type II responses (IL-6, IL-13), a
colony stimulating factor (GM-CSF), and chemokines
(CCL2, CCL3, CCL4, CXCL2). The availability of such
sequences will permit experimental examination of the
roles of these cytokines in deer mice infected with SNV.

Results
Establishment of a deer mouse colony
We identified a location that contained SNV-infected deer
mice and trapped 10 deer mice. Nine (4 males and 5
females) had no IgG antibody to SNV at capture, as well
as after 36 days of quarantine [14], and were used to estab-
lish the colony. Breeders were kept on a 16:8 light:dark
cycle and were provided food and water ad libitum. The
colony has been reproductively vigorous and has pro-
duced nearly 300 offspring in 3 years.

Interleukins
The fragment encoding deer mouse IL-2 was 456 nucle-
otides (nt) in length and represents all but the final three
amino acids (Figure 1) based upon the known sequence
of house mouse IL-2. House mouse IL-2 exhibits an unu-
sual N-terminal structure that is not present in IL-2 of the
other species. Discounting this region, deer mouse IL-2
shares 76% identity and 82% similarity to house mouse
IL-2. As with the other species, deer mouse IL-2 possesses
a 20 residue signal sequence. All three cysteines are con-

served in IL-2 orthologs and C72 and C120 of the deer
mouse polypeptide are predicted to form an intrachain
disulfide bond [15]. The threonine at position 3 of the
mature polypeptide is conserved and serves as a potential
glycosylation site [16]. The predicted α-helices (A-F) are
present, although helix F is incomplete [15].

We cloned a 225 nt fragment of deer mouse IL-6 that
encodes the 53 C-terminal residues, which represents
25% of the coding region (Figure 2). The polypeptide
shares 66% identity and 70% similarity with house mouse
IL-6. The polypeptide possesses the predicted D (E25-
R51) and E (P10-E21) helices [17]. The tryptophan at 157
that is involved in receptor interaction [18] is conserved in
deer mouse IL-6, as is the arginine at position 48. Muta-
tions in this residue have been shown to reduce IL-6 activ-
ity by 100-fold [19].

The cloned IL-12a fragment is 185 nt and represents 28%
of the polypeptide (IL-12 p35, Figure 3). It shares 62%
identity and 74% similarity with house mouse p35 and
includes the first 60 residues of the mature polypeptide.
The human p35 polypeptide has four consecutive residues
not found in the rodent p35 polypeptides (D9-M12).
Conserved cysteines are found at positions 15 and 42, the
latter of which is involved in intrachain disulfide bond
formation [20]. The conserved arginine at position 34
plays a role in the interchain interface with the IL-12 p40
subunit. Helix A, which provides a large interlocking
topology for the p40 subunit, is present in the deer mouse
polypeptide.

The cloned deer mouse IL-13 fragment is 184 nt in length
and represents 47% of the coding region (Figure 4). It pos-
sesses 76% identity and 84% similarity to house mouse
IL-13. The deer mouse polypeptide includes helices B
(G14-T23) and C (Y32-G40), and the first three residues
of helix D (V63-H65) [21]. It also includes both the β1
(M4-S6) and β2 (D58-I61) strands and the amino acids
are completely conserved between the rodent and human
sequences. A hydrogen bond between V5 and I61 of these
interloop strands is predicted to structurally stabilize IL-
13. Three of the four expected cysteines that form intrach-
ain disulfide bonds are present. The deer mouse IL-13
fragment is four amino acids shorter than the human frag-
ment, while the house mouse and rat fragments are three
residues shorter than the human fragment. These differ-
ences are between helix C and the β2 strand.

The cloned IL-21 fragment is 371 nt in length and repre-
sents 84% of the coding region (Figure 5). It shares 81%
identity and 86% similarity with house mouse IL-21. The
polypeptide includes the first three and part of the fourth
helices (A 9–24; B 36–52; C 59–73; D 102–105) typical of
the four-helix-bundle family of cytokines [22]. Residue
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Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-2Figure 1
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-2. The house mouse, rat 
and human sequences were truncated to align with the cloned deer mouse fragment. The sequence accession numbers are 
listed in Table 3 and were aligned using the clustalw multiple alignment algorithm in MacVector DNA analysis software. Identi-
cal amino acids are boxed with dark background, similar amino acids are boxed with light background, and nonidentities have 
white background. The deer mouse polypeptide represents all but the final 3 amino acids. An unusual feature of house mouse 
IL-2 is the presence of a serine- and glutamine-rich region near the N-terminus. A conserved threonine (+) that is a potential 
glycosylation site is located at position 3. All three cysteine residues are conserved in deer mouse IL-2 and it is predicted that 
a disulfide bond is formed between C72 and C120 (*). Conserved residues involved in receptor binding are located at positions 
20 and 42 (^). The predicted alpha helices are denoted by lettered (A-F) underlines.
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Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-6Figure 2
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-6. Sequences were aligned 
as described in Figure 1. The fragment represents approximately 25% of the polypeptide. The E and D helices (underlined) and 
residues implicated in receptor binding are denoted (*).

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-12aFigure 3
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-12a. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 28% of the polypeptide. The polypeptide includes helix A 
(underlined) and conserved cysteines noted with an asterisk (*). The conserved arginine (+) is involved with dimerization to 
the p40 subunit.
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D12, believed to be involved in receptor interaction, is
conserved in all four species [23].

The cloned IL-23a cDNA is 579 nt and represents 94% of
the coding region, including the complete N-terminus
(Figure 6). The polypeptide is 81% identical and 86%
similar to house mouse IL-23a. The fragment contains all
five cysteine residues and all four helices are present (A
Q12-V31; B Q68-T91; C L97-Q117; D Q136-Q165) [24].

GM-CSF
The granulocyte macrophage-colony stimulating factor
(GM-CSF) fragment is 175 nt long and represents 39% of
the coding region (Figure 7). It shares 65% identity and
73% similarity to house mouse GM-CSF. All of helix B
(V40-G50) and parts of helices A (V1-D12) and C (K59-
A61) are present in the fragment [25]. The first β-strand is
located at positions I27-S29. The cysteine at position 39
participates in one of two intrachain disulfide bonds. The
A helix is highly conserved between rodents and plays an
important role in binding to the GM-CSF receptor [26].

Chemokines
The CCL2 fragment is 297 nt and encodes 60% of the
polypeptide (Figure 8). It is 61% identical and 75% simi-
lar to house mouse CCL2. The rodent CCL2 polypeptides
are 43 residues longer than human CCL2. The third and
fourth conserved cysteines (C6, C22) are also present in
the deer mouse polypeptide. Residues 1–6 of the polypep-
tide form a loop that is important in forming the
homodimer interface of CCL2 [27]. A β-sheet is preserved
from A10-T15 as well as a β-strand from L17-R19. A helix
is encoded from W29-Q39.

The CCL3 fragment is 260 nt and encodes the last 41 res-
idues (Figure 9). It represents 45% of the polypeptide and
exhibits 83% identity and 90% similarity to house mouse
CCL3. The deer mouse polypeptide possesses the β2
(G10-K16) and β3 (N18-D24) strands as well as the C-ter-
minal α-helix (V30-L37) [28]. The third (C6) and fourth
(C22) cysteines involved with intrachain disulfide bonds
were also present.

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-13Figure 4
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-13. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 47% of the polypeptide. The fragment includes helices B 
and C and part of helix D, and both β-strands (underlined). Three of the four expected cysteines (*) involved in intrachain 
disulfide bonds are also present.
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The CCL4 fragment is 257 nt fragment and represents all
but the last 7 expected amino acids (Figure 10). It shares
80% identity and 87% similarity with house mouse
CCL4. The polypeptide includes all four conserved
cysteines that form intrachain disulfide bonds (C11-C35,
C12-C51) [28], including the adjacent cysteines that are

the hallmark of CC chemokines. All three β-strands are
present (β1 T26-T31; β2 A39-R45; β3 G47-D53) as is the
α-helix (W58-Y62).

The CXCL2 fragment is 198 nt long, encodes the last 36
amino acids, and represents about half of the mature

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-21Figure 5
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-21. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 84% of the polypeptide and includes the first three and 
part of the fourth helices (A-D, underlined). Conserved cysteines (*) and an aspartic acid (+) involved in receptor binding are 
also present in deer mouse IL-21.
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Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-23aFigure 6
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) IL-23a. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 94% of the polypeptide. All five cysteines (*) are present 
as well as the four α-helices (A-D, underlined).
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Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) GM-CSFFigure 7
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) GM-CSF. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 39% of the polypeptide. It includes partial A and C heli-
ces and the entire B helix and the β1-strand (underlined). One conserved cysteine is also present in deer mouse GM-CSF (*).

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL2Figure 8
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL2. Sequences were 
aligned as described in Figure 1. The fragment represents 60% of the polypeptide. Conserved secondary structures (under-
lined) and cysteines are present in deer mouse CCL2. Two highly conserved regions that form the homodimer interface are 
also conserved in deer mouse CCL2. Rodent CCL2 polypeptides are substantially longer than human CCL2.
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Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL3Figure 9
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL3. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 45% of the polypeptide and includes the second and 
third β-strands, and the α-helix (underlined). The third and fourth conserved cysteines (*) are also present.

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL4Figure 10
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CCL4. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 92% of the polypeptide. All four conserved cysteines (*) 
and all three β-strands are present, as is part of the α-helix.
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polypeptide (Figure 11). It shares 92% identity and simi-
larity to house mouse CXCL2. The fourth conserved
cysteine involved in intrachain disulfide bond formation
is residue 14 [29]. The β2 (E2-L7) and β3 (Q11-L15)
strands that are involved in homodimer formation are
also present, as is the C-terminal α-helix (R23-L30).

Discussion
Pathogenic hantaviruses induce acute inflammatory
responses in humans that contribute to HPS disease pro-
gression [5,6]. Much of the pathology occurs because of
the production of several inflammatory cytokines in the
lungs, including IL-2, IFNγ, tumor necrosis factor (TNF)
and lymphotoxin (LT). In addition, pulmonary T cell
infiltrates are observed in patients that die from HPS. It is
evident that immunopathology contributes to HPS pro-
gression, given that SNV does not cause discernible direct
cytopathology.

We targeted several deer mouse cytokines important in
different aspects of immune responses. Our approach was
to identify highly conserved regions of orthologous
sequences from rodents and humans and to design
primers from them. In many instances no consensus was
found, so degenerate primer sets were used. In our analy-
sis we determined the approximate relative sizes of the
fragments based upon the known length of M. musculus
orthologs; it is likely that some deer mouse genes will be
longer or shorter when full-length sequences become
available.

We also used cells from ostensibly SNV-susceptible deer
mice. It is plausible that, in response to coadaptation with
the virus, some selective pressure has occurred over time
on deer mouse cytokine genes.

IL-2 is the principal T cell growth factor and is secreted by
T helper 1 (Th1) cells during immune responses [30,31].
It is also produced by pulmonary infiltrates in HPS
patients [6] and probably plays an indirect role in inflam-
mation by augmenting TNF expression [32]. IL-21 is an
IL-2 family member that is also secreted by Th1 cells. It
was initially described as an activator of NK cells and an
augmenter of B cell and T cell proliferation [22]. More
recently, it has been shown to play a role in the transition
from innate to adaptive responses by limiting NK cell
responses and activating cytotoxic T lymphocyte
responses [33]. It also skews the immune response
towards a type I response by augmenting expression of the
T-bet transcription factor, IFNγ and receptors for IL-2, IL-
12 and IL-18 [34].

Although GM-CSF is secreted by Th1 cells [31], it is com-
monly used to generate bone marrow-derived dendritic
cells (DC). The receptor-binding region of deer mouse
GM-CSF is highly conserved with respect to house mouse
and rat GM-CSF. This suggested to us that recombinant
house mouse GM-CSF (rGM-CSF), which is commercially
available, might bind to the deer mouse GM-CSF receptor,
and we have obtained preliminary evidence suggesting
that it does (data not shown). Human DC have recently
been shown to support the replication of Hantaan virus
[35], which is related to SNV. It should be possible to

Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CXCL2Figure 11
Amino acid alignment of deer mouse (Pema), house mouse (Mus), rat (Rattus) and human (Homo) CXCL2. Sequences were 
aligned as described in Figure 1. The deer mouse fragment represents 49% of the polypeptide and possesses the last two β-
strands, the α-helix, and the fourth conserved cysteine (*)
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generate deer mouse DC with rGM-CSF to determine
whether they can be infected by SNV and to determine
whether there is a functional consequence of infection.

Both IL-12a and IL-23a polypeptides form heterodimers
with the IL-12b (p40) subunit to form IL-12 and IL-23,
respectively [24,36]. IL-12 facilitates the transition from
the innate response to a type I adaptive immune response,
while IL-23 appears to sustain proliferation of Th1 cells
during the course of an immune response [24,37]. Both
are produced by macrophages and dendritic cells and
influence T cell maturation towards a Th1 phenotype.

In addition to Th2 cells, IL-6 is expressed by many other
cell types and has broad biological activity, including a
major role in augmenting antibody production in acti-
vated B cells [38]. IL-13 is closely linked to the IL-4 gene
cluster in humans and house mice and has a role in class
switching and controlling inflammatory responses
[39,40].

Chemokine production in humans infected with SNV has
not been examined in detail. TNF is produced in the lungs
of patients that die from HPS [6] and mononuclear
infiltrates are present in pulmonary tissues [5]. Since
chemokines are potent recruiters of blood leukocytes into
infected tissues, there must be a prominent role for these
proteins in HPS. Deer mice exhibit no conspicuous
recruitment of leukocytes into the lungs [7], thus compar-
ison of chemokine responses in humans and deer mice
infected with SNV may provide clues as to how their
respective immune systems respond to the virus and how
the virus evades the immune response in deer mice to
establish persistence.

We did not find any conspicuous differences in the amino
acid sequences of deer mouse cytokines or chemokines
compared to rat or house mouse orthologs that would
suggest a functional difference in the mechanism by
which these molecules exert their effects in vivo. More
likely, immunological decisions are made during acute
infection in deer mice that lead to a qualitative difference
in cytokine profiles. These sequences and others that we
previously reported [11] will be useful in characterizing
cytokine and chemokine responses in deer mice. By com-
paring the profiles of these responses in deer mice and
humans, it is possible that therapeutic targets can be iden-
tified in humans infected with hantaviruses. For HPS,
treatment strategies must function quickly because of the
rapidity of patient decline; death can occur within hours
after medical treatment is sought [5,41]. Although antivi-
ral drugs may be developed against the virus, it is likely
that an immunomodulatory approach that prevents or
reverses pulmonary inflammation would be useful in
treating patients.

We believe that the primer sets developed in this work can
be used to amplify orthologous sequences from a variety
of rodent species. Deer mice are New World rodents,
while house mice and rats (Rattus sp.) are Old World
rodents. Deer mice are about 50 million years divergent
(myd) from house mice, while house mice and the labo-
ratory rat (R. rattus) are only 15–25 myd [42]. We
attempted to perform phylogenetic analyses; however, the
short fragments representing most of the genes possessed
insufficient data for meaningful interpretation. We are
currently pursuing additional sequence data to address
this deficiency (Palmer et al., manuscript in preparation).

Conclusions
We have cloned a number of deer mouse cytokine and
chemokine cDNA sequences. These represent several com-
ponents of immune responses, including transition from
innate to adaptive immunity, type I and type II responses,
chemotaxis, and a cytokine useful for producing mature
monocytic cells from bone marrow. The availability of
these sequences will allow the characterization of a por-
tion of the cytokine and chemokine responses in deer
mice acutely or persistently infected with SNV.

Methods
Establishment of deer mouse colony
Deer mice were trapped under license from the Colorado
Division of Wildlife. Sherman live traps were set at a site
where deer mice are known to occur (N 38° 59' 18.9", W
108° 17' 13.3") [12] and baited as described elsewhere
[13]. Ten captured deer mice (P. maniculatus nebrascensis)
were trapped and bled from the retro-orbital capillary
beds and tested for IgG antibody by a standard enzyme-
linked immunosorbent assay (ELISA) [43]. Each deer
mouse was quarantined outdoors in the shade in buried
(10 cm) 20 L plastic buckets with ventilated sealed lids,
bedding, lab mouse chow, and apple slices for water and
inspected daily. None of the animals died during the
quarantine period. One deer mouse was seropositive at
capture and was discarded. At day 30 of quarantine, the
deer mice were again bled and tested for IgG antibody to
SNV by ELISA and still were seronegative. On day 36 of
the quarantine, the 9 uninfected deer mice were trans-
ported to Mesa State College where they were used to
establish a colony with approval of the Institutional Ani-
mal Care and Use Committee.

Cloning and sequencing of deer mouse cytokines and 
chemokines by directed RT-PCR
The procedure for cloning deer mouse genes has been
described elsewhere [11]. Briefly, total RNA was extracted
from splenocyte cultures stimulated with concanavalin A
or lipopolysaccharide and reverse transcribed with oligo-
dT primers (Superscript II, Invitrogen, Carlsbad, CA).
Degenerate primer sets were designed from highly
Page 11 of 14
(page number not for citation purposes)



BMC Immunology 2004, 5 http://www.biomedcentral.com/1471-2172/5/1
conserved orthologous sequences from other rodent spe-
cies and humans (Table 2). First attempts for PCR ampli-
fication (PCR Core Kit, Qiagen, Valencia, CA) were done
with 58°C annealing temperature. If products were not
amplified, PCR was repeated with 5 cycles of 58°C
annealing, 5 cycles of 54°C annealing, then 27 cycles with
58°C annealing. Amplicons were cloned into pGEM-T
Easy (Promega, Madison, WI) and transformed into
NovaBlue competent cells (Novagen, Madison, WI). In
some instances it was necessary to gel-purify PCR prod-
ucts (NucleoTrap, CLONTech, Palo Alto, CA). Colonies
were screened by PCR and those with inserts were grown
in LB/amp broth and the plasmids sequenced (Big Dye
Terminator, Applied Biosystems Inc., Foster City, CA)
using an ABI 310 DNA Analyzer. Sequences from three
independent clones for each gene were assembled using
Sequencher 4 software and identified by BLAST against
house mouse entries in Genbank. House mouse, rat and

human sequences (Table 3) were downloaded from the
NCBI and used for comparative analysis with deer mouse
sequences using the clustal algorithm [44] in MacVector
software (Accelerys, San Diego, CA) and its default trans-
lation table. Amino acid gaps were considered
nonidentities.

List of Abbreviations
IL, interleukin; CC, CC chemokine; CXC, CXC chemok-
ine; GM-CSF, granulocyte macrophage-colony stimulat-
ing factor; SNV, Sin Nombre virus; TNF, tumor necrosis
factor; IFNγ, interferon-γ ; LT, lymphotoxin

Authors' Contributions
TS provided conceptual efforts on establishment of the
colony and the overall cloning strategy and cloned the IL-
13, IL-23a, CCL2 and CXCL2 genes. RG cloned and
sequenced the IL-6 gene. BD cloned and sequenced the

Table 1: Deer mouse cytokine and chemokine cDNA sequences compared to house mouse, rat, and human orthologs.

Similarity (%) to:2

Gene Size (bp) Est. coding region (%)1 House mouse Rat Human
IL-2 456 98 82 89 80
IL-6 225 25 70 83 40
IL-12a 185 28 74 75 69
IL-13 184 47 84 80 71
IL-21 371 84 86 84 70
IL-23a 579 94 86 91 83
GM-CSF 175 39 73 69 62
CCL2 297 60 75 82 70
CCL3 260 45 90 88 81
CCL4 257 92 87 88 86
CXCL2 198 49 92 92 69

1Estimated coding region is based upon length of house mouse polypeptide. 2Similarity is based upon amino acid comparisons, where gaps are 
treated as nonidentities, except as noted in the text for IL-2 (house mouse) and CCL2 (human).

Table 2: Primer sets used to clone deer mouse cDNA sequences.

Gene Forward Primer1 Reverse Primer

IL-2 ATG TAC AGC AKG CAG CTC GC TGT TGA GAT GRY RCT TTG AC
IL-6 GAG RGR AGA CTT CAC AGA GG CAG GAT ATR TTT TCT GAC CAC AG
IL-12a RAC CAC CTC AST TYG GCC AG TGG TAC ATC TTC AAG TCY TC
IL-13 CAA YRG CAG CAT GGT ATG GAG STG GGC YAC YTC GAT TTT GG
IL-21 GTA GTC ATC TTC TTG GGG AC CTT TCT AGG AAT TCT TTG GG
IL-23a AGC CAG ATC TGA GAA GCA GG CTG CTC CRT GGG CAA AGA CC
GM-CSF GTA GAK GCC ATC AAA GAA GC AGG CRC CMT TGA GTT TGG TG
CCL2 ATC ACC AGC AGC ARG TGT CC RRT CAC ACT AGT TCW CTG TC
CCL3 SAG ACC AGC AGC CTT TGC TC RRT GTG GCT ACT TGG CAG C
CCL4 ACC ATG AAG CTC TGC CTG TC RTA CTC ATT GAC CCA GGG C
CXCL2 GAC RGA AGT CAT AGC CAC TC TCA GGW ACG ATC CAG GCT TC

1Sequences are listed 5' to 3'. IUPAC nomenclature: K = G or T; R = A or G; Y = C or T; S = C or G; M = A or C; W = A or T.
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GM-CSF gene. AB cloned the IL-2 and IL-21 genes. TH
cloned and sequenced the IL-12a, CCL3 and CCL4 genes.
JJR supervised the trapping and bled the deer mice. FD
cared for the deer mice during the quarantine period.
CHC and BJB performed diagnostic testing of the deer
mouse serum samples for SNV infection.
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